Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Simon J. Coles, ${ }^{\text {a }}$ * Juan Granifo, ${ }^{\text {b }}$ Michael B. Hursthouse ${ }^{\text {a }}$ and Anthony G. Osborne ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England,
${ }^{\text {b }}$ Departmento de Ciencias Quimicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Casilla 54-D, Temuco, Chile, and ${ }^{\text {c School of Chemistry, }}$ University of Exeter, Exeter EX4 4QD, England

Correspondence e-mail: s.j.coles@soton.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.064 \AA$
R factor $=0.061$
$w R$ factor $=0.129$
Data-to-parameter ratio $=10.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

mer-Bis\{2,6-bis[1-(4-tert-butylphenylimino)ethyl]pyridine]zinc(II) bis[tris(hexafluoroacetylacetonato)zincate(II)] diethyl ether hemisolvate

Reaction of $\left[\mathrm{Zn}(\mathrm{hfac})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with L^{1}, where hfac and L^{1} are hexafluoroacetylacetonate and 2,6-bis[1-(4-tert-butylphenylimino)ethyl]pyridine, respectively, results in the formation of $\left[\mathrm{Zn}\left(L^{1}\right)_{2}\right]\left[\mathrm{Zn}(\mathrm{hfac})_{3}\right]_{2}$, i.e. $\left[\mathrm{Zn}\left(\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3}\right)_{2}\right]\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{3}\right]_{2}$.$0.5 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$. In the cation, the two L^{1} ligands act as merterdentate ligands. Reaction of $\left[\mathrm{Zn}(\mathrm{hfac})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy) results in the formation of $\left[\mathrm{Zn}(\text { terpy })_{2}\right](\text { hfac })_{2}$.

Comment

Previous studies have shown that the reaction of $\left[\mathrm{Zn}(\mathrm{hfac})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with N -donor heterocyclic ligands produces octahedral metal complexes that contain the $\mathrm{Zn}(\mathrm{hfac})_{2}$ moiety. Examples of compounds that have been crystallographically characterized are, for monodentate ligands, cis- $\left[\mathrm{Zn}(\mathrm{hfac})_{2^{-}}\right.$ (pyridine) $)_{2}$ (Pradilla-Sorzano \& Fackler, 1973), trans$\left[\mathrm{Zn}(\mathrm{hfac})_{2}(\mathrm{py})_{2}\right]$, where py is a substituted pyridine (Lee \& Wei, 2000), and, for bidentate chelate N -heterocyclic ligands, cis-[Zn(hfac) $\left.)_{2}(\mathrm{~N}-\mathrm{N})\right]$, where $\mathrm{N}-\mathrm{N}$ represents a substituted 2,2'-bipyridine ligand (Kumada et al., 2000; Lee \& Wei, 2000; Sakane et al., 2000).

(I)

To extend the study to the use of terdentate nitrogen ligands, we have investigated the reaction of $\left[\mathrm{Zn}(\mathrm{hfac})_{2}\right]$-$2 \mathrm{H}_{2} \mathrm{O}$, with $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy), 2,6-bis[1-(4-tertbutylphenylimino)ethyl]pyridine $\left(L^{1}\right)$ and 2,6 -bis[1-(4methylphenylimino)ethyl]pyridine (L^{2}). The product from the reaction with terpy is $\left[\mathrm{Zn}(\text { terpy })_{2}\right](\mathrm{hfac})_{2}$ which was characterized by elemental analysis and ${ }^{1} \mathrm{H}$ NMR studies. In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ solution at 233 K the ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with the formulation $\left[\mathrm{Zn}(\text { terpy })_{2}\right](\mathrm{hfac})_{2}$, but at higher temperatures, there is spectral evidence of some intermolecular exchange by virtue of the partial dissociation of the terpy from the zinc and the consequent attachment of the hfac moiety to the metal. In contrast to this, the reaction of [$\left.\mathrm{Zn}(\mathrm{hfac})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with L^{1} or L^{2} leads to the isolation of the complexes $\left[\mathrm{Zn} L_{2}\right]\left[\mathrm{Zn}(\mathrm{hfac})_{3}\right]_{2}\left(L=L^{1}\right.$ or $\left.L^{2}\right)$ which, for $L=$

Figure 1
The cation moiety of the title compound (50% probability displacement ellipsoids).

Figure 2
The anion moieties of the title compound (50% probability displacement ellipsoids). The CF_{3} groups have been omitted for clarity.
L^{1}, is the title compound, (I). The structure of (I) (Fig. 1) shows that all three Zn atoms are octahedrally coordinated. In the cation, Zn 1 is coordinated by two mer-terdentate chelate L^{1} ligands to form a distorted octahedron. For the coordinated L^{1} ligands, all the N and C atoms of the ligand skeleton are coplanar (r.m.s. deviations $=0.0507$ and 0.0826 for $\mathrm{N} 1 / \mathrm{N} 3$ - and N4/N6-containing ligands, respectively) with only the substituted phenyl rings being twisted out of the coordination plane (dihedral angles between ligand core and phenyl rings $=85.38$, $72.19,48.86$ and 86.74° for rings C1-C6, C20-C25, C30-C35 and C49-C54, respectively). Because of the strain induced in
this type of ligand when it is acting as a terdentate chelate (Edwards et al., 1990), the geometry at Zn 1 is a distorted octahedron. The angles $\mathrm{N} 3-\mathrm{Zn} 1-\mathrm{N} 1$ and $\mathrm{N} 4-\mathrm{Zn} 1-\mathrm{N} 6$ are reduced from the ideal value of 180° to 149.1 (12) and $150.5(11)^{\circ}$, respectively. The four $\mathrm{N}_{\text {imino }}-\mathrm{Zn} 1-\mathrm{N}_{\text {pyridine }}$ bite angles are 76.6 (11), 75.4 (11), 73.9 (11) and $74.0(11)^{\circ}$, which are much reduced from the expected value of 90°. The bond lengths $\mathrm{Zn} 1-\mathrm{N}_{\mathrm{imin}}$ fall in the range 2.15 (3)-2.31 (3) \AA, whereas the $\mathrm{Zn} 1-\mathrm{N}_{\text {pyridine }}$ distances are shorter at 2.03 (3) and 2.06 (3) \AA. Similar ligand distortions are observed in the five-coordinate complex $\mathrm{ZnCl}_{2} L^{3}$, where L^{3} is 2,6-bis[1(phenylimino)ethyllpyridine (Edwards et al., 1990).

The anion moieties of the structure are both composed of three hexafluoroacetylacetonato ligands coordinated octahedrally about a zinc centre with little deformation from idealized geometry. However, these chelating ligands form sixmembered rings with the metal centres and have adopted a number of different conformations which have been analysed by puckering analysis (Cremer \& Pople, 1975). The chelates around Zn 2 form a flat ring (O1-O2 chelate, maximum deviation from mean ring plane $=0.05 \AA$), an envelope (chelate O3-O4) and a half chair (chelate O5-O6). About Zn 3 , the rings adopt a flat conformation (O7-O8 chelate, maximum deviation from mean ring plane $=0.027 \AA$) and envelope conformations for the remaining two ligand ring systems.

Experimental

A solution of $\left[\mathrm{Zn}(\mathrm{hfac})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.037 \mathrm{~g}, 0.072 \mathrm{mmol})$ in diethyl ether was added with stirring to a solution of $L^{1}(0.020 \mathrm{~g}, 0.047 \mathrm{mmol})$ (Granifo et al., 1999) in diethyl ether (10 ml). The yellow solution was concentrated to approximately 5 ml and allowed to stand for 6 h . The yellow crystals obtained were washed with diethyl ether $(2 \times 10 \mathrm{ml})$ and dried under vacuum. Yield $36 \mathrm{mg}, 65 \%$. Analysis for $\left[\mathrm{Zn}\left(L^{1}\right)_{2}\right]\left[\mathrm{Zn}(\mathrm{hfac})_{3}\right]_{2} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$, calculated: C 46.75 , H 3.67, N 3.56%; found: C $46.34, \mathrm{H} 3.40, \mathrm{~N} 3.68 \%$. The zinc complexes with terpy or L^{2} were prepared in a similar fashion. Analyses for $\left[\operatorname{Zn}\left(L^{2}\right)_{2}\right]-$ [$\left.\mathrm{Zn}(\mathrm{hfac})_{3}\right]_{2}$, calculated: C 43.03, H 2.47, N 3.96\%; found: C 43.06, H $2.47, \mathrm{~N} 3.89 \%$. Analyses for $\left[\mathrm{Zn}(\text { terpy })_{2}\right](\mathrm{hfac})_{2}$, calculated: C 50.78 , H 2.56 , N 8.88%; found: C 50.79 , H 2.34, N 8.84%.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3}\right)_{2}\right]\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{HF}_{6} \mathrm{O}_{2}\right)_{3}\right]_{2}$ $.0 .5 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
$M_{r}=2321.68$
Monoclinic, C2/c
$a=42.138$ (2) \AA
$b=19.4444(10) \AA$
$c=26.255(2) \AA$
$\beta=110.969(10)^{\circ}$
$V=20088(2) \AA^{3}$
$Z=8$

Data collection

Nonius FAST TV area-detector diffractometer
φ and ω scans
Absorption correction: refined from $\triangle F(D I F A B S$; Walker \& Stuart, 1983)
$T_{\text {min }}=0.758, T_{\text {max }}=0.837$
26256 measured reflections
$D_{x}=1.535 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 26256 reflections
$\theta=1.8-25.1^{\circ}$
$\mu=0.84 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, yellow
$0.35 \times 0.22 \times 0.22 \mathrm{~mm}$

14012 independent reflections 6038 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-47 \rightarrow 49$
$k=-11 \rightarrow 22$
$l=-30 \rightarrow 30$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.129$
$S=0.76$
14012 reflections
1348 parameters

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0364 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=1.002$
> $\Delta \rho_{\max }=1.04 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.83 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Zn1-N5	$2.03(3)$	Zn2-O5	$2.07(3)$
Zn1-N2	$2.06(3)$	Zn2-O4	$2.07(3)$
Zn1-N3	$2.15(3)$	Zn2-O6	$2.13(3)$
Zn1-N4	$2.19(3)$	Zn3-O12	$2.03(3)$
Zn1-N1	$2.20(3)$	Zn3-O8	$2.06(3)$
Zn1-N6	$2.31(3)$	Zn3-O7	$2.06(3)$
Zn2-O2	$2.06(3)$	Zn3-O11	$2.07(3)$
Zn2-O3	$2.06(3)$	Zn3-O9	$2.07(3)$
Zn2-O1	$2.07(3)$	Zn3-O10	$2.10(3)$
N5-Zn1-N2	$165.2(11)$	O1-Zn2-O4	$173.2(11)$
N5-Zn1-N3	$111.5(11)$	O5-Zn2-O4	$98.1(11)$
N2-Zn1-N3	$75.4(11)$	O2-Zn2-O6	$98.8(11)$
N5-Zn1-N4	$76.6(11)$	O3-Zn2-O6	$160.3(10)$
N2-Zn1-N4	$116.6(11)$	O1-Zn2-O6	$94.8(11)$
N3-Zn1-N4	$95.4(11)$	O5-Zn2-O6	$81.8(10)$
N5-Zn1-N1	$99.2(12)$	O4-Zn2-O6	$81.5(12)$
N2-Zn1-N1	$74.0(11)$	O12-Zn3-O8	$87.5(11)$
N3-Zn1-N1	$149.1(12)$	O12-Zn3-O7	$175.3(11)$
N4-Zn1-N1	$95.1(11)$	O8-Zn3-O7	$89.2(11)$
N5-Zn1-N6	$73.9(11)$	O12-Zn3-O11	$86.0(11)$
N2-Zn1-N6	$92.9(11)$	O8-Zn3-O11	$92.2(11)$
N3-Zn1-N6	$94.1(10)$	O7-Zn3-O11	$90.8(11)$
N4-Zn1-N6	$150.5(11)$	O12-Zn3-O9	$99.6(11)$
N1-Zn1-N6	$90.9(11)$	O8-Zn3-O9	$169.1(11)$
O2-Zn2-O3	$95.7(11)$	O7-Zn3-O9	$84.0(11)$
O2-Zn2-O1	$86.6(11)$	O11-Zn3-O9	$96.4(11)$
O3-Zn2-O1	$99.3(11)$	O12-Zn3-O10	$85.8(11)$
O2-Zn2-O5	$173.5(11)$	O8-Zn3-O10	$87.1(11)$
O3-Zn2-O5	$85.2(11)$	O7-Zn3-O10	$97.4(11)$
O1-Zn2-O5	$86.9(11)$	O11-Zn3-O10	$171.8(12)$
O2-Zn2-O4	$88.4(11)$	O9-Zn3-O10	$85.3(11)$
O3-Zn2-O4	$85.7(11)$		

H atoms were located in idealized positions and their coordinates and displacement parameters allowed to ride on those of the parent atom. The refinement required damping in order to prevent parameters from shifting excessively, due to a low percentage of observed reflections.

Data collection: MADNES (Pflugrath \& Messerschmidt, 1989); cell refinement: $M A D N E S$; data reduction: $M A D N E S$; program(s) used to solve structure: $S H E L X S 97$ (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

We thank the EPSRC for funding of the X-ray Crystallographic Service and the Universidad de La Frontera (Dirección de Investigación y Desarrollo, Project PPF 106) for financial support (to JG).

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Edwards, D. A., Mahon, M. A., Martin, W. R., Molloy, K. C., Fanwick, P. E. \& Walton, R. A. (1990). J. Chem. Soc. Dalton Trans. pp. 3161-3168.
Granifo, J., Bird, S. J., Orrell, K. G., Osborne, A. G. \& Sik, V. (1999). Inorg. Chim. Acta, 295, 56-63.
Kumada, H., Sakane, A., Koga, N. \& Iwamura, H. (2000). J. Chem. Soc. Dalton Trans. pp. 911-914.
Lee, C. J. \& Wei, H. H. (2000). Inorg. Chim. Acta, 310, 89-95.
Pflugrath, J. W. \& Messerschmidt, A. (1989). MADNES. Version 11. Distributed by Delft Instruments, Delft, The Netherlands.
Pradilla-Sorzano, J. \& Fackler, J. P. (1973). Inorg. Chem. 12, 1174-1182.
Sakane, A., Kumada, H., Karasawa, S., Koga, N. \& Iwamura, H. (2000). Inorg. Chem. 39, 2891-2896.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

